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Abstract

Cognitive decline due to Alzheimer’s disease (AD) is closely associated with brain struc-

ture alterations captured by structural magnetic resonance imaging (sMRI). It supports

the validity to develop sMRI-based univariate neurodegeneration biomarkers (UNB). How-

ever, existing UNB work either fails to model large group variances or does not capture

AD dementia (ADD) induced changes. We propose a novel low-rank and sparse subspace

decomposition method capable of stably quantifying the morphological changes induced by

ADD. Specifically, we propose a numerically efficient rank minimization mechanism to ex-

tract group common structure and impose regularization constraints to encode the original

3D morphometry connectivity. Further, we generate regions-of-interest (ROI) with group

difference study between common subspaces of Aβ+ AD and Aβ− cognitively unimpaired

(CU) groups. A univariate morphometry index (UMI) is constructed from these ROIs by

summarizing individual morphological characteristics weighted by normalized difference be-

tween Aβ+ AD and Aβ− CU groups. We use hippocampal surface radial distance feature to

compute the UMIs and validate our work in the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) cohort. With hippocampal UMIs, the estimated minimum sample sizes needed to

detect a 25% reduction in the mean annual change with 80% power and two-tailed P = 0.05

are 116, 279 and 387 for the longitudinal Aβ+ AD, Aβ+ mild cognitive impairment (MCI)

and Aβ+ CU groups, respectively. Additionally, for MCI patients, UMIs well correlate with

hazard ratio of conversion to AD (4.3, 95% CI=2.3−8.2) within 18 months. Our experimen-

tal results outperform traditional hippocampal volume measures and suggest the application

of UMI as a potential UNB.

Keywords: Magnetic resonance imaging (MRI), Alzheimer’s disease, Subspace

decomposition, Univariate morphometry index, Minimum sample size, Cox proportional

hazard model

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and also the most

common type of dementia. Its prevalence is predicted to triple to 13.8 million by 2050. It is
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generally agreed that effective diagnosis and treatment of AD could have enormous public

health benefits. Prior research on structural magnetic resonance imaging (sMRI) supported

its validity as a potential noninvasive neurodegeneration biomarker of AD (Frisoni et al.,

2010; Sperling et al., 2011; Jack et al., 2016; Zhao et al., 2017). Such sMRI-based imaging

biomarkers will facilitate the development of effective interventions that may postpone (or

prevent) symptomatic AD (Caselli and Reiman, 2013; Langbaum et al., 2013).

Structural MRI-based measures of atrophy including whole brain (Fox et al., 1999; Chen

et al., 2007; Stonnington et al., 2010), entorhinal cortex (Cardenas et al., 2011), hippocam-

pus (Jack et al., 2003; Thompson et al., 2004; den Heijer et al., 2010; Wang et al., 2011; Dong

et al., 2019) and temporal lobe volumes (Hua et al., 2010), as well as ventricular enlarge-

ment (Jack et al., 2003; Thompson et al., 2004; Wang et al., 2011; Dong et al., 2020), correlate

closely with changes in cognitive performance, inspiring various neuroimaging biomarker ap-

proaches. Among them, hippocampal atrophy measures from sMRI are widely used, as

hippocampal morphometry changes are apparent in the early stages of memory decline and

may anticipate progression to mild cognitive impairment (MCI) and AD (Jack et al., 2003).

While much AD imaging biomarker research has been devoted to group difference-based

analyses, a univariate neurodegeneration biomarker (UNB) based on an individual patient’s

brain scans with high diagnostic accuracy would be highly desirable for clinical use (Sabuncu

et al., 2016). Such a personalized measure may overcome inflated Type I error due to multi-

variate comparisons. For example, for randomized clinical trials (RCT), regulatory agencies,

including the Food and Drug Administration (FDA), requires conventional univariate hy-

pothesis testing and its associated statistical power analysis (Langbaum et al., 2013). Mean-

while, a single MRI-based measure of cerebral atrophy was used as a neurodegeneration

biomarker in the recently proposed AD amyloid/tau/neurodegeneration (A/T/N) frame-

work (Jack et al., 2016). It is a descriptive system for categorizing multidomain biomarker

findings at the individualized level in a format that is easy to understand and use. Rather

than conceptualizing AD primarily as a clinicopathological entity, in this system AD is

diagnosed using biomarkers such as brain imaging or by measuring substances in the cere-

bral spinal fluid. This change may allow preclinical AD diagnosis on presymptomatic pa-

tients (Knopman et al., 2018). However, a recent work (Illan-Gala et al., 2018) reported
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that the currently available neurodegeneration biomarkers, including hippocampal volume

and cortical signature of AD (Dickerson et al., 2009), were poorly correlated both in their

whole dataset and along the AD continuum. Therefore, to advance computational neu-

roanatomy to clinical usage, developing a robust method to quantify brain sMRI difference

using a statistically powerful UNB will be highly advantageous for clinical diagnosis and

prognosis.

In the past decade, a variety of univariate morphological MRI biomarker algorithms have

been developed (e.g. Racine et al., 2018; Cardenas et al., 2011; Cortechs Labs, 2020; Vemuri

et al., 2008; Tu et al., 2020). Meanwhile, a few multivariate analysis frameworks (Hua et al.,

2011; Gutman et al., 2013) took statistical or machine learning approaches to optimize the

minimum sample size estimation for clinical trials. Among them, most are based on regions-

of-interest (ROI) analyses and obtain a UNB by summarizing image information from these

ROIs. Such methods enjoy good biological interpretability and excellent computational

efficiency. However, there are a number of issues: (1) In their modeling, such approaches do

not take into account the strong noise and the large within-group variance on the obtained

sMR images; (2) When setting up training data, they usually use the clinical symptom-

based AD diagnosis without the confirmation of imaging or fluid Aβ information. These

difficulties have largely limited the statistical power and generalibility of their UNB due to

excessive imaging noise, strong individual morphological differences and the inhomogeneity

of dementia.

To address these challenges, it is important to generate reliable and robust sMRI ROIs

that reflect intrinsic structural differences caused by AD dementia (ADD). Recently, research

on low-rank and sparse subspace decomposition by rank minimization and sparse constraint

has attracted strong interest (Cao et al., 2017; Jang et al., 2016; Javed et al., 2016). In

particular, robust principal component analysis (RPCA) (Candès et al., 2011) through prin-

cipal component pursuit (PCP) decomposes a data matrix into two subspaces which include

a low-rank component and a sparse component. The low-rank subspace may mine the com-

mon structure belonging to a specific group, and the sparse component can detect salient

features belonging to a specific individual (Hastie et al., 2015). When individual brain image

measurements of the same group subjects are stacked into columns to generate the group ob-
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servation matrix, we may expect its low-rank components correspond to the group common

structure. Except for this group common structure, individual image differences correspond

to the sparse component. Furthermore, one of the hallmarks of AD is the accumulation

of beta-amyloid plaques (Aβ) in human brains and a positive Aβ reading is now accepted

as ‘dementia due to AD’ together with the presence of clinical symptoms. In this paper,

we propose a novel subspace decomposition-based method to generate the ROIs based on

the group difference from extracted low-rank components of Aβ positive AD and Aβ neg-

ative cognitively unimpaired (CU) groups and later define a univariate neurodegeneration

biomarker, univariate morphometry index (UMI), which may reflect intrinsic morphological

changes induced by ADD and also have strong generalization ability on new subjects. Previ-

ous research (e.g. Thompson et al., 2004; Apostolova et al., 2010; Qiu et al., 2010; Costafreda

et al., 2011; Dong et al., 2019) has demonstrated that surface-based hippocampal morphom-

etry analysis offers advantages over volume measures. Therefore, we apply our subspace

decomposition method to hippocampal measures obtained with our prior hippocampal mor-

phometry study (Shi et al., 2013) to construct UMIs. We hypothesize that our low-rank

and sparse subspace decomposition framework together with surface-based measures may be

used to compute robust and efficient UNBs and improve their statistical power compared

with the traditional univariate biomarker, such as hippocampal volumes (Jack et al., 2003;

Cortechs Labs, 2020). Here, we set out to validate our hypothesis on brain sMR images from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.

2. Material and Methods

2.1. Subjects

Data is downloaded from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database ((Mueller et al., 2005), adni.loni.usc.edu). ADNI is the result

of efforts of many co-investigators from a broad range of academic institutions

and private corporations. Subjects have been recruited from over 50 sites across

the U.S. and Canada. The primary goal of ADNI is to test whether biological

markers, such as serial MRI and positron emission tomography (PET), combined

with clinical and neuropsychological assessments, can measure the progression
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of MCI and early AD. Subjects originally recruited for ADNI-1 and ADNI-

GO had the option to be followed in ADNI-2. For up-to-date information, see

www.adniinfo.org.

In this study, we use brain structural MRI data from 151 Aβ positive (Aβ+)

AD patients and 271 Aβ negative (Aβ−) CU to identify the ROIs which are

further used to define UMI. To validate our algorithm, we study (1) longitudinal

brain imaging changes via group difference and minimum sample size estimation;

and (2) future clinical decline prediction for MCI patients via survival analysis.

In the first experiment, we use structural MRI data from 165 longitudinal Aβ+

subjects, including 46 AD, 55 MCI and 64 CU subjects. All subjects of each

longitudinal group underwent two tests, including the baseline test and a 24-

months test. In the second experiment, we use 155 MCI patients including 59

MCI subjects who have converted to probable AD and 96 non-converter MCI

subjects within 18-months period.

2.2. System Pipeline Overview

Here we briefly overview the processing procedures in our univariate morphometry index

(UMI) system. Following sections are detailed explanations of each step.

Fig. 1 summarizes the overall sequence of steps in the system. First, we reconstruct hip-

pocampal surfaces after we segment hippocampi from T1-weighted MR images. We register

hippocampal surfaces across subjects and compute surface morphometry features, radial dis-

tance (RD) (Pizer et al., 1999; Styner et al., 2006; Thompson et al., 2004) (the first row,

Fig. 1). Second, we build group morphometry (i.e., radial distance - RD) obser-

vation matrices, i.e., the observation matrix of Aβ positive (Aβ+) AD group and

the observation matrix of Aβ negative (Aβ−) CU group, where each individual

RD features are concatenated as a column vector. Due to the morphological

similarity within the same group, we further decompose each group RD matrix

into low-rank component and sparse component based on the matrix factoriza-

tion with orthogonal constraint and sparsity shrinkage strategy (the second row,

Fig. 1). Third, with group difference study, we identify significantly different
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Figure 1: The proposed univariate morphometry index (UMI) generation system pipeline, illustrated by the

intermediate results.
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areas between the low rank components of two groups, Aβ+ AD group and Aβ−
CU group, as the regions-of-interest (ROI) and use them as the significant mor-

phological change regions induced by ADD (the third row, Fig. 1). Finally, based

on the registration result of an individual hippocampal surface, the UMI of the

individual subject is computed through the voxel-wise AD atrophy degrees and

the individual atrophy degrees defined on the ROIs (Sec. 2.5). As applications

of the computed UMIs, we apply them to three different studies, including lon-

gitudinal analysis, sample size estimation, and progression rate predictions from

MCI to probable AD (the fourth row, Fig. 1)

2.3. Image Acquisition and Hippocampal Morphometry Surface Feature Computation

High-resolution brain structural MRI scans are acquired at multiple ADNI sites us-

ing 1.5 Tesla MRI scanners manufactured by General Electric Healthcare, Siemens Medical

Solutions, and Philips Medical Systems. For each subject, the T1-weighted MRI scan is

collected with a sagittal 3D MP-RAGE sequence. Typical 1.5T acquisition parameters are

repetition time (TR) of 2, 400 ms, minimum full excitation time (TE), inversion time (TI)

of 1, 000 ms, flip angle of 8◦, 24 cm field of view. The acquisition matrix is 192× 192× 166

in the x, y, and z dimensions and the voxel size is 1.25× 1.25× 1.2mm3. In-plane, zero-filled

reconstruction (i.e., sinc interpolation) generate a 256×256 matrix for a reconstructed voxel

size of 0.9375× 0.9375× 1.2mm3.

The hippocampal substructures are segmented with FIRST (Patenaude et al., 2011) based

on the T1-weighted MRI scans, and hippocampal surfaces are automatically reconstructed

based on the segmentations (Han et al., 2003; Lorensen and Cline, 1987). To overcome the

noise caused by the image scanning and the partial volume effects, a smoothing process

consisted of two steps, i.e., progressive meshes (Hoppe, 1996) and loop subdivision(Loop,

1987), is applied to the reconstructed hippocampal surfaces. A nonlinear surface registration

method, inverse consistent fluid registration method (Shi et al., 2013), is applied to register

individual hippocampal surfaces to a standard template surface by constrained harmonic

maps. After the registration, surface deformation statistics are computed to obtain the radial

distance (RD) (Pizer et al., 1999; Styner et al., 2006; Thompson et al., 2004) represented as
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the shortest distance from each surface vertex to the medical axis of a tube-shape surface. For

the following subspace decomposition analysis, we represent an individual’s RD features as a

column vector and concatenate them to construct group morphometry observation matrices.

2.4. Low-Rank and Sparse Subspace Decomposition Algorithm

Based on the robust principal component analysis (RPCA) (Candès et al., 2011), the

low-rank component L and the sparse component S in a morphological observation matrix

A ∈ <m×n (m is the dimension of the biomarker and n is the number of the subjects)

can be extracted through a convex optimization procedure. The low-rank component L is

the group common structure contributed by all the individuals in the same group, and the

sparse component S is the sparse characteristics which belong to specific individual subjects.

In practice, the observation matrix is usually corrupted by noise N which can affect every

data matrix entry and lead to analysis errors. To solve this problem and achieve a stable

separation, a convex model called stable principal component pursuit (SPCP) (Zhou et al.,

2010) has been proposed. This model may guarantee a stable recovery of L and S with an

error bound proportional to the overall noise magnitude ‖ N ‖F . The solution to SPCP can

be formulated by the following equation,

min
L,S
‖L‖∗ + λ‖S‖1 s.t. : ‖L+ S − A‖F ≤ ε (1)

In Eq. 1, ‖ · ‖∗ is the nuclear norm and ‖ · ‖1 is the l1-norm, given by ‖L‖∗ = Σiσi(L),

‖S‖1 = Σi,j | si,j | respectively, where σi(L) is the vector of singular values of L, the λ

controls the relative importance of the low-rank component L vs. the sparse component S.

The noise N is implicit in the equation, i.e., L+S+N = A. Since SPCP algorithm involves

minimizing a combination of l1-norm and nuclear norm, the singular value decomposition

(SVD) step included in the nuclear norm makes the convergence of SPCP optimization

problem very slow, especially for large-scale observation matrices (Tseng, 2008; Lin et al.,

2009). To reduce the SVD computation cost for a large-scale matrix, we adopt a low-rank

matrix factorization mechanism (Liu and Yan, 2012) to factorize a large-sized matrix into

the product of two small-sized matrices. Because the group common structure L is of low-

rank, L can be factorized into the product of two small-sized matrices, i.e., L = UV, U ∈
<m×r, V ∈ <r×n, r � m, r � n. Then we obtain ‖L‖∗ = ‖UV ‖∗ = ‖V ‖∗ by enforcing U
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to be column orthonormal, i.e., UTU = I, I is the identity matrix. Thus, Eq. 1 can be

transformed into an optimization problem constrained on a small-scale matrix,

min
U,V,S
‖V ‖∗ + λ‖S‖1 s.t. : ‖UV + S − A‖F ≤ ε, L = UV, UTU = I. (2)

Since any low-rank matrix L can be factorized into a product of two small-sized matrices

L = UV with UTU = I, this transformation significantly speeds up the SPCP optimization

for large-scale matrices.

To extract the sparse component S without loss of the original spatial information, we

define S as continuous patches in local regions. We further propose a novel formulation

which considers the original spatial distribution of the sparse morphological component S.

Supposing we have an observation data matrix A ∈ <m×n, and A = {a1, ..., ai, ..., an} where

ai denotes the column vector of the original morphological measurements of i-th subject. In

order to detect the local continuous characteristics, we enforce a local sparse measure‖S‖Ω,1

for every column in the observation matrix, defined as follows:




A(p, i)→ X i
q, X̄ i

q = (
∑

Ωq
(X i

q)
2)

1
2 , X̄ i

q → Ā(p, i)

‖S‖Ω,1 = A(p, i)� Tµ|Ā(p, i)|
(3)

where p is the number of the row in the observation matrix and q is the vertex sequence

number in the triangular mesh of the specific subject. And Ωq denotes the one-ring area

centered on the vertex q, � is the Hadamard product, Tµ is the shrinking function and µ is

the threshold. By using ‖S‖Ω,1 to replace the l1-norm constraint in Eq. 2, and representing

the local spatial continuous characteristics of the salient features, Eq. 2 can be modified as,

min
U,V,S
‖V ‖∗ + λ‖S‖Ω,1 s.t. : ‖UV + S − A‖F ≤ ε, L = UV, UTU = I (4)

Given the well-known alternating direction method and the Douglas-Rachford operator

splitting (DR) method (Douglas and Rachford, 1956), the minimization task of the Eq. 4

can be decomposed into three simpler tasks which solve the variables L, S,N separately in

a consecutive order. Let Y be the Lagrange multiplier associated with the linear constraint

in Eq. 4, the augmented Lagrangian function of Eq. 4 is:

LA(V, S,N) := ‖V ‖∗ + λ‖S‖Ω,1− < Y,UV + S +N − A > +
β

2
‖UV + S +N − A‖2

F (5)
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Based on the DR method, let βk > 0, the according iteration procedure for Eq. 5 is

described as follows:




Nk+1 = argminN∈B
βk
2
‖N + UkV k + Sk − 1

βk
Y k − A‖2

F

Sk+1 = argminN∈<m×nλ‖S‖Ω,1 + βk
2
‖S + UkV k +Nk+1 − 1

βk
Y k − A‖2

F

Lk+1 = argminV ∈<r×n‖V ‖∗ + βk
2
‖UV + Sk+1 +Nk+1 − 1

βk
Y k − A‖2

F

Y k+1 = Y k − βk(Uk+1V k+1 + Sk+1 +Nk+1 − A)

(6)

The generated subproblems in Eq. 6 admit analytic solutions. The first subproblem

involving Nk+1 can be solved explicitly via:

Nk+1 =
min{‖Nk‖F , ε}
‖Nk‖F

Nk (7)

where Nk = 1
βk
Y k + A − UkV k − Sk. Note that the computation complexity for this sub-

problem is O(mn). For the second subproblem involving Sk+1 in Eq. 6, it is equivalent to

solve the following equation.

min
S
λ‖S‖Ω,1 +

βk
2
‖ 1

βk
Y k + A− UkV k −Nk+1 − S‖2

F (8)

Denoting Gk
S = 1

βk
Y k +A−UkV k−Nk+1, and substituting Gk

S(p, i) for A(p, i) in Eq. 3. The

following formulation gives a closed-form solution of the minimization with respect to

Sk+1(p, i) = Gk
S(p, i) max(0, 1− λ/βk

Ḡk
S(p, i)

) (9)

Here Ḡk
S(p, i) is the result matrix which is the Ā(p, i) in Eq. 3. Therefore, Eq. 9 sets the

pixels of S(p, i) to be zero value if the corresponding Ḡk
S(p, i) is less than λ/βk, or shrinks

the corresponding pixel by a factor 1 − λ/βk
Ḡk

S(p,i)
. After an iteration of S update, we obtain

Sk+1, Nk+1 terms. Denote Gk
L = 1

βk
Y k + A − Ek+1 − Nk+1, and the known condition

(Uk)TUk = I, Lk = UkV k. To acquire the Uk+1 with column orthonormal and V k+1 with

a small scale, we chose two-steps. First, we fix the V k and compute the Uk+1. According

to Higham and Papadimitriou (1995), the update of Uk is given by the following equation,

Uk+1 = P(Gk
L(V k)T ) (10)

For a given matrix Z = Gk
L(V k)T , SVD can be applied to Z and the result is Z = PΣQ.

Therefore the operator P can be defined as P(Z) = PQT . It can be verified that P(Z) is
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always column orthonormal (i.e., (P(Z))TP(Z) = I ). Through Eq. 10, we can get the Uk+1

by satisfying the condition (i.e., ‖Lk+1‖∗ = ‖Uk+1V k+1‖∗ = ‖V k+1‖∗ ). Second, fixing Uk+1

and computing the V k+1, the update of Vk is as follows,

V k+1 = Qµ((Uk+1)TGk
L) (11)

For a given matrix T = (Uk+1)TGk
L, µ > 0, the solution of minimizing of the nuclear

norm of T is given by Qµ(T ), defined by

Qµ(T ) := Jdiag(Sµ(Σ))K (12)

where J , K and Σ are obtained by the singular value decomposition (SVD) of T , and

Sµ(Σ) := sign(Σi,i) · max(0, abs(Σi,i) − µ) (Cai et al., 2008). Here µ = 1/βk+1. Thus,

according to Eq. 10 and Eq. 11 , the solution of Lk+1 in Eq. 6 can also be solved by

Lk+1 = Uk+1V k+1 (13)

With Eq. 10 and Eq. 11, the SVD computation complexity is reduced fromO(mnmin(mn))

to O(mnr). In addition, we set the parameters in Eq. 5 as λ = 1√
max{m,n}

, where m and n

represent the numbers of rows and columns in the observation data matrix. The parameter

β0 = 1.25
σL
, βk+1 = α · βk. The σL is the largest singular value of the observation data matirx

and α ∈ (1, 2). And the parameter ε in Eq. 1 is set as
√

(min(m,n) +
√

8 ·min(m,n))·δ (Tao

and Yuan, 2011), δ is the standard deviation of the observation data matrix. Finally, the

algorithm is terminated when ‖(Uk+1Vk+1,Sk+1)−(UkVk,Sk)‖F
‖(UkVk,Sk)‖F +1

≤ τ · δ. Based on the above de-

scription, we can use the proposed method to efficiently and accurately recover the low-rank

component and the sparse component with a local continuous constraint from the large-scale

data matrix in a complicated environment. In particular, we can use the low-rank compo-

nent, i.e., where L denotes the group common structure, to study the group differences

without considering the individual specific diversities in S.

2.5. Univariate Morphometry Index (UMI)

Taking the morphological RD measures on the hippocampal surfaces as fea-

tures, we apply the subspace decomposition algorithm to analyze data from both
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Aβ+ AD and Aβ− CU groups and obtain the essential group common morpholog-

ical structures from the individuals of the same group, i.e., Ls of Aβ+ AD group

and Aβ− CU group, while discarding the within-group morphological differences

and the noise. Using the two group common morphological structures, the ROIs

are generated through group difference analysis. This means that the generated

ROIs reflect the hippocampal morphological structure changes from CU to AD.

Next, we obtain the voxel-wise AD atrophy degrees by normalizing the mean differences

between the L of Aβ+ AD group and the L of Aβ− CU group in the predefined ROIs. The

individual atrophy degree can be computed in the predefined ROIs by normalizing the dif-

ferences between the RD vector of an individual subject and the low-rank component mean

of the Aβ− CU group. Last, the UMIs can be obtained through the voxel-wise summation

across all the voxels on the predefined ROIs with the production of AD atrophy degrees and

the individual atrophy degree:

UMI =

∑r
i=1(DTi ·DWi

)

100
(14)

where r is the total number of voxels in the predefined ROI, DTi denotes the atrophy degree

at voxel i of the testing individual T (defined as the mean of the Aβ negative CU group

subtracted by the individual RD on the predefined ROI), and DWi
is the atrophy degree at

voxel i (defined as the difference of the mean of Aβ+ AD group and the mean of Aβ− CU

group on the predefined ROI). From Eq. 14, we see that the UMIs measure how similar the

individual atrophy degree is when compared to the AD atrophy degree in the selected ROIs,

similar to our previous work (Chen et al., 2011). In other words, the greater the UMIs, the

closer the individual atrophy degree from the AD morphological characteristics.

2.6. Assessments of Univariate Morphometry Index

2.6.1. Group Comparisons

We compare the group mean differences for the UMI results of different longitudinal Aβ+

groups based on the paired t-test, including longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU

groups. All subjects of each longitudinal group underwent two tests, including the baseline

test and a 24-months test. We use Cohen’s d test to evaluate the effect size. Cohen’s
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d test takes the difference in means between two groups and is devided by the

pooled standard deviation of the groups. For MCI converters and non-converters

within 18-months period, we analyze the group differences of the UMI measures, Mini-Mental

State Examination (MMSE) (Folstein et al., 1975) scores, Auditory Verbal Learning Test

Total (AVLT-Total) (Rey, 1964) scores and hippocampal volume measurements by using

analysis of variance (ANOVA) method to compare their statistical discrimination abilities .

2.6.2. Minimum Sample Size Estimation for Longitudinal Study

To assess the statistical power of the defined UMI, we study the minimum sample size

estimation, i.e., with 80% power and a 25% reduction in the mean annual change, using

a two-sided test and standard significance level α − 0.05 for a hypothetical two-arm study

(treatment vs. placebo, as advocated by the ADNI Biostatistics Core) (Beckett et al., 2010)

for longitudinal (baseline and 24-months follow-up) studies. The minimum sample size is

computed from the below formula:

minimum sample size = C
σ2

(m1 −m2)2
(15)

where σ denotes the standard deviation of the biomarkers’ changes, m1 and m2 refer to the

mean value of the biomarkers at the time t1 and t2 of the longitudinal data. C is a constant.

If the minimum sample size derived from a biomarker B1 was smaller than that of another

biomarker B2, we may conclude that biomarker B1 has more differentiation ability than

biomarker B2. It suggests that minimum sample size is an indicator for characterizing the

statistical power of biomarkers.

2.6.3. Prediction Rates of Progression from MCI to probable AD

We compare UMIs, hippocampal volume measurements and AVLT-Total scores in their

abilities to predict rates of conversion from MCI to AD within the 18-months period after

baseline. We initially use Receiver Operating Characteristic (ROC) analyses to determine

the measurement cut-offs with optimal sensitivity and specificity for distinguishing between

the MCI converters and those who are stable. The nearest point method is used to find the

cut-offs on the ROC curve closest to (0,1), that is, the point with optimal sensitivity and

specificity. The cut-offs are used to compare the MCI patients with or without a positive
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Aβ+ AD Aβ− CU Inferential Statistics

Sample Size 151 271

Gender(M/F) 79/72 132/139 χ2 = 0.51; p = 0.48

Age 74.58± 7.88 74.02± 6.68 F = 0.60; p = 0.44

MMSE 22.60± 3.09 28.94± 2.18 F = 602.03; p < 0.0001

Table 1: Demographic information of Aβ+ AD subjects and Aβ− CU subjects

test score (i.e., those with or without a higher UMI, lower hippocampal volume or lower

AVLT-Total score) in the hazard ratio of converting from MCI to AD within 18-months

period. We also report area under the curve (AUC), which is an effective and combined

measure of sensitivity and specificity that describe the inherent validity of a classification

test. Thus, for each biomarker of interest, univariate Cox proportional hazard model is

constructed to determine the hazard ratio for progression to AD within the 18-months period

in MCI patients who are classified into subjects with scores above the cut-off value (positive

biomarker) in comparison with those with scores below (negative biomarker). And Kaplan-

Meier plots are used to describe the ability of each biomarker of interest to distinguish

between those MCI patients with and without a positive biomarker.

3. Experimental Results

3.1. Computing Univariate Morphometric Index (UMI) with Hippocampal Surface Features

To extract the significant morphological changes induced by AD, we apply the subspace

decomposition to a cohort consisting of patients with dementia due to AD (defined Aβ+

AD) and Aβ− CU subjects. In the ADNI dataset, there are 422 subjects including 151

Aβ+ AD patients and 271 Aβ− CU subjects (Table 1). Demographic and clinical data are

compared using a one-way analysis of variance, and the gender data are analyzed by a χ2

test (Crivello et al., 2014). Table 1 indicates that the factors of age and gender of the two

groups are matched, while the MMSE is significantly different between these two groups.

When the individual RD features belonging to the same group are stacked into columns

to generate a morphological observation matrix, the observation matrix is low-rank, and the
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Figure 2: The extracted ROI results for the Aβ+ AD and Aβ− CU group differences based on the low-rank

data and the radial distance (RD) data. (a) and (b) are the statistical ROI results for the left hippocampus

(LH). (c) and (d) are the statistical ROI results for the right hippocampus (RH). And (a) and (c) are the

statistical ROI results based on the low-rank components. (b) and (d) are the statistical ROI based on

the raw RD data. All statistical ROI results are obtained by the permutation t-test (p-value< 0.00001).

Non-blue colors indicate the number of times a vertex is selected.
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β0 δ rank(L) ‖S‖Ω,1 ‖L+ S − A‖/‖A‖

LH
Aβ- CU 0.08 0.06 ∼ 0.08 11 ∼ 12 267 ∼ 280 0.080

Aβ+ AD 0.11 0.05 ∼ 0.07 9 ∼ 10 365 ∼ 388 0.084

RH
Aβ- CU 0.08 0.06 ∼ 0.09 11 ∼ 12 285 ∼ 301 0.081

Aβ+ AD 0.11 0.05 ∼ 0.07 9 ∼ 10 411 ∼ 425 0.089

Table 2: Performance indicators of the subspace decomposition algorithm for the Aβ+ AD group and the

Aβ− CU groups. LH and RH indicate left hippocampus and right hippocampus, respectively.

low-rank components correspond to the group common morphological structure. We use the

generated common morphological structures of Aβ+ AD group and Aβ− CU group to form

ROIs which represent the regions significantly affected by ADD. To validate if generated

ROIs are consistent each time, we randomly divide the subjects of each group into 10 folds

and chose 9 folds from each group as the training sets. This process is repeated 10 times.

We apply our subspace decomposition algorithm to extract the low-rank component L of

Aβ+ AD and Aβ− CU groups. The total performance indicators for left hippocampus (LH)

and right hippocampus (RH) of the two groups based on our algorithm are shown in Table

2. Here we set the parameter λ as 0.0082.

As shown in Table 2, the computed β0, δ, rank(V ) and ‖L+S−D‖/‖D‖ parameters of the

same group are similar whether on the LH or the RH. The rank of L is obtained by counting

the number of the eigenvalues of L whose values are greater than three times the δ. After

extracting the L and S from the training data each time, we define the ROIs by permutation

tests (Gill, 2007) between two groups based on the low-rank component L. The permutation

t-test is a type of statistical significance test. The distribution of the test statistics under

the null hypothesis is obtained by calculating all possible values under rearrangements of the

labels on the observed data points. As the training samples are taken randomly each time

(the changing rate is about 10%), each obtained ROI will be inconsistent if the extracted L

components are not robust. We compare the extracted ROIs based on the L components

with the RD data. The generated ROIs are the vertices whose permutation t-test p-values
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represent the group differences smaller than 0.00001. The results of the generated ROIs are

shown in Fig. 2, where (a) and (b) are the statistical ROI results for the LH, (c) and (d) are

the statistical ROI results for the RH. Fig. 2 (a) and (c) are the statistical ROI results based

on the low-rank components. (b) and (d) are the statistical ROIs based on the raw RD data.

Non-blue colors indicate the number of times a vertex is selected. The red color denotes that

the vertex is selected for 10 times after 10 ROI generation processes. From the results, we

can see that the selected ROIs based on the low-rank components are more robust than the

ones based on the raw RD data. For the left hippocampus, the vertices selected for 10 times

account for 73% of the total number of ROI vertices based on the low-rank components,

while it is 51% based on the raw RD data. It suggests that the low-rank components may

represent the essential common structure from the subjects without the interference of the

unique individual structure and the noise.

All the experiments are performed with an Intel Core i7 personal computer,

with 3.40 GHz CPU, 16GB RAM and MATLAB 2016 installed in the Win 7 op-

erating system. The execution time for extracting low-rank components of right

hippocampus (RH) and left hippocampus (LH) from 151 Aβ+ patients and 271

Aβ− subjects is approximately 170.24 seconds. The execution time for generating

ROIs of RH and LH by permutation t-tests between these two groups is approx-

imately 7441.64 seconds when the number of random permutation processes is

set as 5, 000 based on the Monte Carlo method. Based on the obtained low-rank

components and ROIs, the execution time to compute UMI of a new subject by

using Eq. 14 is approximately 0.12 seconds on average. Since the ROI generation

is usually done once during the training state, our relatively short UMI compu-

tation time on a new subject (0.12 seconds) demonstrates the feasibility of our

algorithm for online UMI computation.

In order to verify whether the generated UMI results based on the low-rank

components have reasonable statistical power for distinguishing different clinical

groups, we introduce the UMI based on raw RD measures (UMI-RD) and the

volume measures to compare the discrimination powers with the UMIs. The

UMIs of the longitudinal Aβ+ subjects are computed according to the Eq. 14
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Gender(M/F) Education Age MMSE

AD baseline
21/25 14.33± 2.13

75.09± 8.60 22.24± 1.80

AD m24 77.18± 8.65 17.88± 4.46

MCI baseline
29/26 15.73± 2.31

72.49± 6.67 27.51± 1.88

MCI m24 74.52± 6.46 25.50± 2.76

CU baseline
28/36 15.87± 2.25

75.27± 5.33 29.09± 0.92

CU m24 77.96± 5.68 28.06± 1.21

Table 3: Demographic information of Aβ+ subjects in three clinical groups.

based on the obtained ROIs shown in Fig. 2 (a) and (c). The UMIs-RDs of

the longitudinal Aβ+ subjects are computed according to Eq. 14 based on the

obtained ROIs shown in Fig. 2 (b) and (d). For the clarity of the content in

the following sections, if not stated, UMIs refer to those generated based on

subspace decomposition and UMI-RDs refer to those generated based on raw RD

measures. The volumetric MRI measurements of the hippocampus are generally

accepted as one of the best established biomarkers for clinical AD progression

research (Jack et al., 1999). Similar to prior approaches that used hippocampal

volume for AD diagnosis, (e.g. Pennanen et al., 2004; Chupin et al., 2007, 2009),

the hippocampal volume is computed on our smoothed surfaces after they are

linearly registered to the MNI imaging space (Patenaude et al., 2011; Shi et al.,

2013; Dong et al., 2019).

3.2. Longitudinal Data Analysis

Based on the predefined ROIs and the AD atrophy degrees, we study the statistical

differentiation ability of the low-rank components for the longitudinal subjects. In this

study, we use 165 longitudinal Aβ+ subjects, including 46 AD, 55 MCI and 64 CU subjects.

The demographic characteristic statistics information for the study samples is shown in Table

3. All subjects undergo two tests, including the baseline test and a 24-months test.
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Longitudinal Group (bl vs. m24) AD MCI CU

p-value of UMI 7.74e− 15 3.54e− 10 1.28e− 09

Effect Size of UMI 1.39 0.92 0.85

p-value of UMI-RD 1.52e− 03 3.70e− 03 1.29e− 02

Effect Size of UMI-RD 0.79 0.65 0.56

p-value of Volume 1.48e− 13 9.72e− 09 1.19e− 08

Effect Size of Volume 1.31 0.90 0.74

Table 4: The statistical comparison results, including group difference p-value and effect size, of different

longitudinal groups based on the UMI, UMI-RD and volume measures.

3.2.1. Group Difference Study

The obtained UMI, UMI-RD and volume results show that the mean values of the UMIs

and UMI-RDs have a upward trend while the mean value of the volume measures have a

downward trend from baseline to the 24-months follow-up, among CU to MCI to AD stage.

The statistical comparison results of different longitudinal groups based on the

UMI, UMI-RD and volume measures are shown in Table 4. The p-value results

of different longitudinal groups are computed by two-sided paired t-tests. The

effect sizes of different longitudinal groups are computed by paired Cohen’s d

measure.

For the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU , the p-values and

effect sizes for UMIs mean differences are 7.74e− 15 and 1.39, 3.54e− 10 and 0.92,

1.28e − 09 and 0.85, respectively. For UMI-RDs, the p-values and effect sizes of

the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU are 1.52e−03 and 0.79, 3.70e−03

and 0.65, 1.29e−02 and 0.56, respectively. For hippocampal volume measures, the

p-values and effect sizes of the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU are

1.48e−13 and 1.31, 9.72e−09 and 0.90, 1.19e−08 and 0.74, respectively. The results

indicate that the UMIs may have a stronger discrimination ability to distinguish

the longitudinal groups than both the UMI-RDs and the hippocampal volume
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measures.

Figure 3: The minimum sample size comparisons between UMIs, UMI-RDs and volume measures for AD,

MCI and CU longitudinal Aβ groups.

3.2.2. Minimum Sample Size Estimation

Next we will demonstrate the reduction of minimum sample size by using

UMI as a biomarker in clinical studies. With Eq. 15, we estimate the minimum

sample sizes of UMIs, UMI-RDs and volume measures. As shown in Fig. 3, the

minimum sample sizes of the UMIs of the longitudinal Aβ+ AD, Aβ+ MCI and

Aβ+ CU groups are 116, 279 and 387, respectively. For UMI-RDs, the minimum

sample sizes of the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU groups are

402, 590 and 787, respectively. For volume measures, the minimum sample sizes

of the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU groups are 136, 352 and

451, respectively. Regardless of whether it is based on the UMIs or the volume

measures, the minimum sample sizes of longitudinal Aβ+ AD group is smallest,

followed by the longitudinal Aβ+ MCI group, and the minimum sample sizes

of longitudinal Aβ+ CU group is largest. It indicates that the morphological

changes in the Aβ+ AD group are relatively largest, followed by Aβ+ MCI group,

and the morphological changes in Aβ+ CU group are relatively smallest between

the baseline and the 24-months follow-up. Meanwhile, the results show that the
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Converter Non-converter Inferential Statistics

Sample Size 59 96

Gender(M/F) 35/24 64/32 χ2 = 0.85; p = 0.36

Age 75.46± 6.65 75.28± 7.29 F = 0.03; p = 0.87

MMSE 26.79± 1.81 27.29± 1.62 F = 3.17; p = 0.078

Table 5: Demographic information of MCI converters and MCI non-converters

minimum sample sizes from the volume measures and UMI-RDs are all larger

than our UMIs, indicating that the subspace decomposition-based UMIs may

have detected the essential morphological changes induced by ADD better than

the volume measures and UMI-RD measures.

3.3. Predicting Clinical Decline in MCI Patients

In our experiments, we use 155 MCI patients (Table 5) containing 59 MCI subjects who

have converted to probable AD and 96 MCI non-converters within 18-months period. Based

on the two kinds of predefined ROIs from the low-rank components and raw RD measures of

the Aβ+ AD and Aβ− CU groups in Section 3.1, we compute the UMIs and UMI-RDs

of MCI converters and MCI non-converters, respectively. The MCI converters

are distinguished from the non-converters by the UMIs (p-value< 0.0001), the

UMI-RDs (p-value= 0.076), the hippocampal volume measures (p-value=0.0015)

and the AVLT-Total scores (p-value=0.0002). We choose the UMIs, UMI-RDs,

hippocampal volume measures and AVLT-Total scores to predict the conversion

rates from MCI to AD within 18 months after baseline, respectively.

Then we determine the measurement cut-offs with optimal sensitivity and specificity

for distinguishing between the MCI converters and those who are stable based on Receiver

Operating Characteristic (ROC) analysis. As shown in Fig. 4. The AUC, 95% confidence

interval (CI) of AUC and optimal criterion are 0.749, [0.673, 0.815] and 6.27 for the UMIs,

0.596, [0.514, 0.673] and 1.87 for the UMI-RDs, 0.659, 0.662, [0.581, 0.763] and 7897.50

for volume measures and [0.579, 0.733] and 29 for AVLT-Total scores, respectively.
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Figure 4: The ROC analysis results of UMIs, UMI-RDs, volume measures and AVLT-Total scores.
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β HR (95% CI) p-value

UMI 1.5 4.3 (2.3− 8.2) 5.8e− 06

UMI-RD 0.73 2.1 (1.2− 3.7) 1.1e− 02

Volume 0.99 2.7 (1.5− 4.7) 4.5e− 04

AVLT-Total 0.69 2 (1.2− 3.3) 9.1e− 03

Table 6: Estimated hazards ratios (HRs) of 18-months conversion to AD in MCI patients with positive

versus negative biomarkers using univariate Cox analyses.

Based on the optimal criteria of the UMIs, UMI-RDs, volume measures and

AVLT-Total scores, four additional labels are added to the MCI-converter and

MCI-nonconverter subjects, i.e., High/Low UMI (HU/LU), High/Low UMI-

RD (HU-RD/LU-RD), High/Low volume (HV/LV) and High/Low AVLT-Total

(HA/LA). In the view of the effects of AD, it may increase the UMI and UMI-

RD and decrease the hippocampal volume and AVLT-Total scores. We call HU,

HU-RD, LV and LA as positive biomarkers, and LU, LU-RD, HV and HA as

negative biomarkers. After separately fitting the Cox regression model (Hosmer

et al., 2008) using the four labels above, we compute hazard ratios of 18-months

conversion to AD in MCI patients with positive biomarkers versus negative

biomarkers. The results in Table 6 show the regression beta coefficients (β), the

hazard ratios (HRs) and statistical significance (p-value) for UMIs, UMI-RDs,

volume measures and AVLT-Total scores within the 18-months observation pe-

riod. The UMIs, UMI-RDs, hippocampal volume measures, and AVLT-Total

scores remain significant for predicting conversion from MCI to AD. In particu-

lar, when the MCI patients with LU, LU-RD, HA and HV negative biomarkers

are chosen as the reference groups, the MCI patients with HU positive biomark-

ers had the highest HRs of conversion to AD (4.3 95% CI=2.3 − 8.2), followed

by LV (2.7 95% CI=1.5 − 4.7), HU-RD (2.1 95% CI=1.2 − 3.7) and LA (2 95%

CI=1.2− 3.3).

In addition, we compute survival probabilities for progression to AD in MCI
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Figure 5: The survival probability analysis for progression to AD in MCI patients based on UMI, UMI-RD,

hippocampal volume and AVLT-Total measures. 25

                  



patients who are classified into positive or negative biomarkers by fitting the

Kaplan-Meier curves. The survival probablities of the MCI patients based on

UMIs, UMI-RDs, hippocampus volume measures and AVLT-Total scores are

shown in Fig. 5. In each plot, the two lines represent survival curves of the

two groups with positive and negative biomarkers, i.e., HU vs. LU, HU-RD vs.

LU-RD, HV vs. Lv and HA vs. LA. The vertical lines in each plot indicate the

censored data, their corresponding x values indicate the time at which censoring

occurred. Here the log-rank test is used to compare the survival group differences

based on χ2 test. A result with p-value < 0.05 indicates that the two groups are

significantly different in terms of survival time. From the results in Fig. 5, we

can conclude that the two group survival differences based on the four labels are

significant, that is, the patients with LU, LU-RD, HV and HA have a significantly

better prognosis compared to patients with HU, HU-RD, LV and LA. Moreover,

the largest survival group difference is found in UMIs, followed by hippocampal

volume measures UMI-RDs and AVLT-Total scores. For example, at the time

point of 18-months, the probability of survival is approximately 0.45, 95% CI

[0.35, 0.57] for HU group and 0.83, 95% CI [0.75, 0.92] for LU group, 0.54,

95% CI [0.45, 0.65] for HU-RD group and 0.74, 95% CI [0.64, 0.86] for LU-RD

group, 0.49, 95% CI [0.40, 0.62] for LV group and 0.76, 95% CI [0.67, 0.87] for HV

group, 0.52, 95% CI [0.41, 0.65] for LA group and 0.72, 95% CI [0.63, 0.82] for HA

group. This may also indicate that the UMIs based on subspace decomposition

have stronger discrimination power for survival analysis.

4. Discussion

Our current work has two main findings. First, it is possible to develop and apply a

low-rank and sparse subspace decomposition approach to solve UNB problems. To develop a

robust and effective UNB, an important question is how to accurately extract group common

structures with the consideration of recovering sparse components within a feature space cor-

rupted by strong group variances and noise. In this work, we propose to take a subspace

decomposition approach and improve the RPCA method (Candès et al., 2011) by adopting

26

                  



a low-rank matrix factorization mechanism (Liu and Yan, 2012), imposing regularization

constraints into the sparse component to encode spatial connectivity in the original 3D

morphometry features and proposing an efficient numerical scheme to solve the formulated

optimization problem. We identify the ROIs by studying the group differences between com-

mon structures of pathology-confirmed AD group (Aβ+ AD) and Aβ− CU groups. Based on

the ROIs, we further define our UMI by summarizing an individual morphological structure

information in these ROIs. The resulted UMI may sensitively identify abnormal degrees

induced by neurodegenerative diseases without the interference of individual morphologi-

cal discrepancies and noise. Second, although low-rankness and sparsity techniques (Hastie

et al., 2015; Vidal et al., 2016; Lin and Zhang, 2017) are widely adopted in computer vision

and medical imaging research (e.g. Wang et al., 2012, 2018), to our knowledge, it is the first

work that apply them to surface morphometry features for UNB generations. Our current

experimental results in longitudinal data analysis and survival analysis show that surface hip-

pocampal morphometry features, i.e., radial distance (Pizer et al., 1999; Thompson et al.,

2004; Styner et al., 2006), lead to superior results than the traditional hippocampal volume

measures (Jack et al., 1999; Cortechs Labs, 2020). Similar to previous work (Thompson

et al., 2004; Apostolova et al., 2010; Qiu et al., 2010; Costafreda et al., 2011; Dong et al.,

2019), it also verifies that surface-based brain subcortical analysis may be useful to capture

AD-induced morphological changes.

4.1. Influence of Subspace Decomposition Parameters

In Eq. 4, we see that the parameter λ which controls the relative importance of the

low-rank term L vs. the sparse term S was set as 1√
max{m,n}

, where m and n represent the

numbers of rows and columns in the observation data matrix. To understand the relation-

ships between the L, S with the different values of the parameter λ, we chose the Aβ+ AD

and Aβ− CU group as the research objects. We find that the rank(V ) and ‖S‖Ω,1 tend to

decrease with an increase of the λ, as shown in Fig. 6. Because the threshold of the sparse

component constraint is increasing with the increase of the λ in the Eq. 9, the immediate

result is the decrease of the ‖S‖Ω,1. In addition, although the change of λ is not directly

related to the change of rank(V ), results indicate that the rank(V ) decrease due to grad-
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Figure 6: The rank(V ) and ‖S‖Ω,1 comparisons between Aβ+ AD and Aβ− CU groups with the different λ

ually increasing removal of the noise and the sparse term S with the increase of λ. And

the rank(V ) is stable when λ was greater than 0.006. However, when the λ become too

large, it results in homogeneous structures, reducing the discriminatory power for classify-

ing the Aβ+ AD and Aβ− CU groups. To validate the distinguishing power of the UMIs

generated under different λ, we randomly use 90% of the Aβ+ AD and Aβ− CU group as

the training data to extract the common structures of these two groups with each λ . The

generated UMIs from remaining 10% of these two groups are classified using ROC analysis.

This process is repeated 10 times. The average classification error rates with the different λ

are shown in Table 7. The results show that both high or low λ will lead to an increase in

classification error rate. This indicates that a low λ introduces excessive noise and residual

information of individuals and a high λ makes the common structures of the two groups tend

to be consistent. In both cases, the generated ROI cannot correctly reflect the morphological

changes caused by AD, resulting in a decrease in UMI classification results. Based on the

above discussion, λ is empirically set as 0.0082 throughout this paper.

4.2. Effect Size Comparison Between Aβ+ and Aβ− subjects in the Longitudinal Study

To further validate the subspace decomposition-based UMIs have strong dis-

crimination power for detecting the morphological changes induced by ADD, we

analyze additional longitudinal Aβ− subjects from ADNI database comparable

to the Aβ+ group, which includes 32 AD, 54 MCI and 74 CTL subjects. The de-
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λ UMI-AD UMI-CU classification error

0.003 11.57± 6.09 0.30± 7.35 0.1833

0.004 11.17± 6.26 0.3364± 7.18 0.1839

0.005 10.17± 6.07 0.7550± 7.54 0.1667

0.006 13.08± 5.95 0.28± 7.83 0.1439

0.007 13.77± 5.87 0.59± 7.97 0.1311

0.008 13.87± 4.08 0.59± 6.50 0.1191

0.009 13.91± 4.12 0.90± 6.34 0.1194

0.01 13.37± 5.36 0.95± 6.79 0.1244

0.011 12.61± 6.26 0.99± 7.09 0.1451

0.012 12.54± 5.97 0.76± 7.65 0.1661

0.013 10.79± 6.32 0.02± 7.10 0.1900

0.014 11.36± 6.77 0.68± 7.06 0.1933

Table 7: The classification error rates for the UMIs of Aβ+ AD and Aβ− CU group with the different λ.

The values of UMI mean are followed by standard deviations

mographic characteristic statistics information and the obtained UMIs for these

Aβ− samples are shown in Table 8. Similar to Aβ+ data, after the registration,

surface deformation statistics are computed to obtain the raw RDs of all the

longitudinal Aβ− subjects. Based on the predefined ROIs (Fig. 2 (a) and (c)

in Section 3.1) and the AD atrophy degrees, we compute the UMIs of different

longitudinal Aβ− groups.

Then we use Cohen’s d as effect size measure to test the differences between

the univariate biomarkers (UMI vs. volume measure) changes of the longitudinal

Aβ+ group and those of Aβ− group in same clinical groups (AD, MCI and CU).

The effect size comparison results are shown in Table 9. The results show that

the differences between UMI changes of the longitudinal Aβ+ group and those

of the longitudinal Aβ− group are more significant than the differences between
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Gender(M/F) Education Age MMSE UMI

AD baseline
18/14 15.86± 2.53

76.56± 6.34 22.86± 1.93 11.97± 7.15

AD m24 78.71± 6.56 18.87± 3.78 15.62± 7.01

MCI baseline
25/29 15.61± 2.44

69.72± 8.21 28.48± 1.62 5.74± 8.93

MCI m24 71.86± 8.21 27.01± 2.05 8.77± 8.79

CU baseline
32/42 15.89± 2.60

72.96± 6.08 29.15± 1.13 1.45± 8.03

CU m24 75.06± 6.04 28.66± 1.15 4.36± 7.59

Table 8: Demographic information of Aβ− subjects in three clinical groups.

volume changes of the longitudinal Aβ+ group and those of the longitudinal

Aβ− group. Since the UMIs are defined on the ROIs induced by ADD, it leads

to larger changes in UMIs of longitudinal Aβ+ group, and smaller changes in

UMIs of longitudinal Aβ− group. The results may also justify that the subspace

decomposition-based UMIs have strong discrimination power for detecting the

morphological changes induced by ADD.

4.3. Correlation Analysis with Cognitive Outcomes in Different Clinical Groups

In this section, we investigate whether changes of UMI results are corre-

lated with changes of clinical rating scores within 24 months, such as Clini-

cal Dementia Rating Sum of Boxes CDR-SB (Morris, 1993), AD Assessment

Scale-Cognitive Subscale (ADAS-Cog11) (Rosen et al., 1984) and MMSE scores.

UMIs Volume Measures

AD 0.98 0.72

MCI 0.73 0.41

CTL 0.52 0.27

Table 9: The effect sizes from the differences between univariate biomarker measure (UMI and volume

measure) changes of Aβ+ group and those of Aβ− group in the same stage (AD, MCI, CU).
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Group variables R 95% CI of R p-value of R

AD

UMI vs. CDR-SB 0.44 [0.26 0.59] 9.26e− 06

UMI vs. ADAS-Cog11 0.49 [0.32 0.63] 6.74e− 07

UMI vs. MMSE −0.50 [−0.64 − 0.33] 3.41e− 07

MCI

UMI vs. CDR-SB 0.40 [0.14 0.61] 3.35e− 03

UMI vs. ADAS-Cog11 0.52 [0.28 0.69] 8.79e− 05

UMI vs. MMSE −0.42 [−0.62 − 0.16] 2.16e− 03

CU

UMI vs. CDR-SB 0.19 [−0.06 0.41] 0.14

UMI vs. ADAS-Cog11 0.35 [0.11 0.55] 5.15e− 03

UMI vs. MMSE −0.05 [−0.29 0.19] 0.68

Table 10: The correlation analysis results between UMI and CDR-SB, ADAS-Cog11 and MMSE for different

Aβ+ longitudinal groups.

CDR-SB, ADAS-Cog11 scores are used to help track the progression of cognitive

impairment, where a higher score indicates more severe dementia. Here we use

the same Aβ+ longitudinal subjects (46 AD, 55 MCI and 64 CU in Section 3.2)

and with the Pearson parametric test (Lemasson et al., 2012), we explore the

correlation between the UMI changes and the clinical outcome changes within 24

months, including CDR-SB, ADAS-Cog11 and MMSE scores. The correlation

analysis results, i.e., correlation coefficients (R), 95% confidential intervals of R

and correlation significance of t-test for R between the UMI changes and the

changes of CDR-SB, ADAS-Cog11 and MMSE scores for different Aβ+ longitu-

dinal groups are shown in Table 10.

Results show that the UMIs of Aβ+ longitudinal AD and MCI groups have

moderate correlations with the CDR-SB, ADAS-Cog11 and MMSE scores. This

is likely due to that the proposed UMIs well correlate with clinical outcomes

within Aβ+ longitudinal AD and MCI groups. However, the correlations be-

tween the UMIs and the CDR-SB and MMSE scores of Aβ+ longitudinal CU
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group are not so significant as that of Aβ+ AD and MCI groups. From the per-

spective of data distribution, it is due to the fact that the distribution trend of

the morphological changes depicted by UMIs differs from the distribution trend

of the cognitive changes depicted by CDR-SB and MMSE scores within Aβ+ lon-

gitudinal CU group. A plausible reason may be that the morphological changes

caused by AD occurred before the cognitive decline in the stage of unimpaired

cognition, as proposed in the hypothetical model of AD biomarkers (Jack et al.,

2013) and validated in a number of prior work (Sperling et al., 2011; Jack et al.,

2018; Weston et al., 2016; Zhao et al., 2017), including our own study (Dong

et al., 2019).

4.4. Assessment of Enrichment Performance

To evaluate the enrichment performance of UMIs, we use a cut-point based

enrichment strategy (Yu et al., 2014) in Aβ+ longitudinal MCI group (the same

MCI group in Section 3.2 denoted as unenriched group) to select the MCI sub-

group (enriched group) and calculate the three clinical characteristics (CDR-SB,

MMSE and ADAS-Cog11) of the selected MCI subgroup. The enrichment strat-

egy is implemented as follows. First, a range of cutoff values are determined as

the 60th , 75th and 90th percentiles of UMIs in the Aβ− CU cohort (271 Aβ−
CU subjects in Section 3.1), which serve as a normative reference population.

Secondly, for each cutoff value, we extract the clinical characteristics of the se-

lected MCI subgroup and derive implications for clinical trials where only this

subgroup will be enrolled. We calculate the effect size of the 24-months change

in each of the three clinical measures. Denoting the effect size of the enriched

group by ES ′ and the unenriched group by ES, we then calculate the sample

size N ′ = (ES/ES ′)2N required to achieve a statistical power equivalent to an

unenriched group of size N (Yu et al., 2014). The comparison results of effect

sizes and sample sizes of different clinical measures for the specific cut-points,

i.e., 60th , 75th and 90th percentiles of the UMIs distribution of CU cohort, are

shown in Fig. 7.
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Figure 7: Effect of UMI-based enrichment on effect sizes and sample sizes, as a function of cut-point (60th,

75th and 90th percentiles of the distribution of UMIs in the Aβ− CU cohort) for CDR-SB, ADAS-Cog11

and MMSE measures. Error bars indicate 95% confidence intervals of the estimated sample sizes.
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In the upper plot of Fig. 7, the results show that the effect sizes of all three

clinical measures increase in all enriched group according to the specific cutoff

values, comparing to the unenriched group. In general, more stringent cutoff

values (higher UMI thresholds) lead to greater effect size. Cut-points corre-

sponding to the 60th, 75th and 90th percentiles of the Aβ− CU cohort distribu-

tion yield effect sizes of 14.9% − 31.3% (CDR-SB), 15.3% − 44.4% (ADAS-Cog11)

and 14.3%− 34.3% (MMSE) greater than the unenriched group. The sample size

results are shown in the lower plot of Fig. 7. Reduced sample sizes are ob-

tained across the three cut-points for the three clinical measures. Error bars

indicate 95% confidence intervals of the estimated sample sizes. For cut-points

corresponding to 60th, 75th and 90th percentiles of the UMIs distribution of CU

cohort, sample sizes corresponding to 57.8% − 74.5% (CDR-SB), 47.8% − 74.0%

(ADAS-Cog11) and 54.6% − 75.9% (MMSE) of the unenriched case (100%) are

estimated. This indicates that subspace decomposition-based UMIs provides an

enrichment biomarker to select a fraction of the screening group that is likely to

imminently progress most rapidly.

4.5. Comparison with Heat Kernel Smoothing

The motivation of our subspace decomposition work is to increase the signal-

to-noise (SNR) and improve the sensitivity of statistical analysis. Surface smooth-

ing work, especially heat kernel smoothing algorithm (Chung et al., 2005), has

been adopted in our prior work (e.g. Shi et al., 2015; Paquette et al., 2017)

to increase the SNR of surface tensor-based morphometry (TBM) features and

boost the sensitivity of statistical analysis. Here we use the heat kernel smooth-

ing results to generate UMIs and compare its performance with the one of our

subspace decomposition-based UMIs. First, we use heat kernel smoothing (the

kernel width=1 and the number of iteration=100) to generate the smoothed

hippocampal RD measures of the same subjects in Section 3.1, i.e., 151 Aβ+ AD

patients and 271 Aβ− CU subjects. Second, following the content of Section 3.1,

we randomly select 90% of the subjects in each group to generate ROIs. This pro-
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Figure 8: The extracted ROI results for the Aβ+ AD and Aβ− CU group differences based on the smoothed

RD measures. All statistical ROI results were obtained by the two-sample t-test (corrected p-value< 0.0001).

Non-blue colors indicate the number of times a vertex is selected.

cess is repeated 10 times. At each time, the regions of significant smoothed RD

difference (ROIs) between Aβ+ AD group and Aβ− CU group are assessed via

the two-sample t-test with random field theory based p-value correction. Here,

we use p-value correction method (Benjamini and Hochberg, 1995) to controlling

the false discovery rate (FDR). The desired false discovery rate (q) is set as 0.0001

and the generated ROIs are the vertices whose t-test corrected p-values repre-

sent the group differences smaller than q. The results of the generated ROIs

are shown in Fig. 8. Non-blue colors indicate the number of times a vertex is

selected. The red color denotes that the vertex is selected for 10 times after 10

ROI generation processes. From the results, we can see that the selected ROIs

based on the smoothed RD measures have a certain degree of similarity with the

ROIs based on low-rank components. This indicated that heat kernel smoothing

and subspace decomposition have similar effects in improving the stability of the

ROI generation.

Using AD atrophy degrees and individual atrophy degrees on the generated

ROIs based on the smoothed RD measures, we compute the UMIs of the lon-
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gitudinal Aβ+ subjects according to the Eq. 14. With Eq. 15, we estimate the

minimum sample sizes of UMIs based on the smoothed RD measures. The min-

imum sample sizes of the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU groups

are 261, 374 and 546, respectively. The results show that the minimum sample

sizes from the UMIs based on smoothed RD measures are all smaller than those

based on raw RD measures. This indicates that heat kernel smoothing may in-

crease the SNR and the sensitivity of statistical analysis. On the other hand,

the results show that the minimum sample sizes from the heat kernel smoothing-

based UMIs are all larger than low-rank decomposition-based UMIs, indicating

that the low-rank decomposition-based UMIs gain more statistical power than

those of the heat kernel smoothing-based UMIs. Part of the reason may be

due to the fact that the decomposed low rank and subspace better characterizes

group level morphometry features.

4.6. Limitations

The proposed low-rank and sparse subspace decomposition-based UMI represents our

initial efforts to develop robust ROI-based UNB. Nonetheless, there are several limitations

of this study to consider. First, a relatively small number of subjects are included as

the research objects, e.g. the ROIs are extracted from 151 Aβ+ AD patients and

271 Aβ− CU subjects, which are certainly not enough to fully characterize the

general morphological change patterns caused by ADD. Consequently, the range

of morphological characteristics of individuals identified by the computed UMIs

are likely incomplete. Besides, we have not tested our UMI framework together

with the discovered ROIs in a cohort other than ADNI. Even so, our current

results demonstrate the proposed approach may improve statistical power in

a variety of UNB applications. Effect size comparison results also show that

this proposed UMI measure is more sensitive to detect the hippocampal mor-

phological changes than hippocampal volume measure. Second, we choose the RD

as the hippocampal morphological feature because RD has been applied in several sub-

cortical studies and served as an ideal description of the hippocampal structural changes
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induced by ADD. However, tensor-based morphometry (Chung et al., 2008) and multivari-

ate TBM (Wang et al., 2011) may be sensitive to deformations such as rotation, dilation, and

shear along the surface tangent direction, and theorefore the TBM or mTBM may effectively

capture hippocampal structural alterations (e.g. atrophy and enlargement) in tensor fields.

The ability to describe the morphological features of the hippocampus will be enhanced if we

combine the TBM or mTBM measures and the RD measure. Third, in this study, we are us-

ing UMIs alone to predict rates of progression from MCI to probable AD without combining

other types of biomarkers, such as amyloid/tau/neurodegeneration (A/T/N) measurement

framework (Jack et al., 2016), fluorodeoxyglucose positron emission tomography (FDG-PET)

measurements of the regional cerebral metabolic rate for glucose (CMRgl) decline (Landau

et al., 2010) as a marker of clinical AD progression, fibrillar amyloid-β PET measurements

using Pittsburgh Compound B (PiB) (Ikonomovic et al., 2008) and cerebrospinal fluid (CSF)

amyloid β1−42 levels (Fagan et al., 2007) as biomarkers of AD pathology. If we combine these

biomarkers with UMIs and carry out multivariate Cox analyses, the correctness of survival

probabilities would likely be improved.

5. Conclusion

In this paper, we present a univariate neurodegeneration biomarker generation frame-

work based on subspace decomposition to correctly and effectively depict the morphological

changes induced by ADD. Applying the matrix decomposition and the local sparse con-

straints on the RD observation matrices, we obtain the ROIs closely associated with ADD

which are robust to image noise. We then generate the UMIs to improve the statistical

power for in vivo MRI morphological analyses. Our empirical results demonstrate the po-

tential that the UMIs may capture the ADD-induced brain morphometry abnormalities of

the longitudinal groups at high risk for AD. Based on the optimal classification criterion,

the UMIs have strong discrimination power for predicting the conversion rates from MCI

subjects (converter and non-converter) to AD. The proposed framework is general and may

be generalized to process other 3D brain imaging data, such as PET imaging data (Chen

et al., 2011). In future studies, we will also evaluate our method in other brain

imaging cohorts, such as Arizona APOE cohort (Caselli et al., 2004, 2009) and
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OASIS cohort (LaMontagne et al., 2019).
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